CRASH COURSE IN INTRO TO OPTICS

Dunlap Instrumentation Summer School
July 25, 2017

Shelley Wright
UC San Diego
Center for Astrophysics & Space Science
http://oirlab.ucsd.edu/
Some of my highs and lows navigating a career in astrophysics

(totally not to scale- does not necessarily correlate with personal life)

S. Wright – July 24, 2017
Astronomical Instrumentation

• The detector and readout and “drive” electronics
• Opto-mechanical layout (telescopes, lenses, mirrors, filters, gratings, etc.)
• Enclosure and cooling (i.e., detector, instruments components)
• Signal processing hardware (e.g., amplifiers, ADU converters)
• Motion control and “housekeeping” systems (e.g., motorized mechanisms, temperature control, monitoring devices)
• Electronic interfaces
• Computers and peripherals
• Image/data display and data processing
Astronomical Instrumentation

• The detector and readout and “drive” electronics
• Opto-mechanical layout (telescopes, lenses, mirrors, filters, gratings, etc.)
• Enclosure and cooling (i.e., detector, instruments components)
• Signal processing hardware (e.g., amplifiers, ADU converters)
• Motion control and “housekeeping” systems (e.g., motorized mechanisms, temperature control, monitoring devices)
• Electronic interfaces
• Computers and peripherals
• Image/data display and data processing
Lecture Outline

• **Light and its interaction with physical objects**
 – Ways of thinking about light
 – Diffraction
 – Reflection and Refraction
 – Scattering
 – Absorption

• **Basic Optics: raytracing, lenses, & telescopes**
 – Thin lenses
 – Images, focal planes, lensmaker formula
 – Telescope, f-numbers
 – Pupils
 – Aberrations
I. Light and its interaction with physical stuff
Light: A Carrier of Astrophysical Information

• Light exhibits the quantum mechanical property of wave-particle duality.

• We consider the wave nature, representing a probability distribution for photon location.

• We also consider the particle interaction of individual photons with matter.
Method/measurements used dictates ways we think of light

• **Photons** – particles with energy $h \nu$
 - Important for calculating detector efficiencies, considering scattering processes, beamsplitting, blackbody radiation

• **Waves** – with interference, vibrate charges in a substance have a polarization.
 - Important for diffraction limit, seeing, gratings, diffraction spikes, polarization effects in scattering

• **Rays** – representing the path of photons (or equivalently wavefront normals)
 - Important for thinking about optics, image quality, aberrations, etc. (not as fundamental as particle and waves, but useful analytically/geometrically)
Light as a wave

- Light is a transverse wave
- Maxwell’s equations is an EM wave that propagates in z direction with an E and B field
- Characterized by two complex numbers, e.g., E_0^x, E_0^y or four real real ones (I, Q, U, V)—the Stokes parameters
- Intensity is proportional to $|E_0^x|^2 + |E_0^y|^2$

\[
\begin{align*}
\vec{E}_x(z, t) &= E_{0x} \cos(kz - \omega t) \hat{x} \\
\vec{E}_y(z, t) &= E_{0y} \cos(kz - \omega t + \epsilon) \hat{y}
\end{align*}
\]
Electromagnetic Radiation

- The quantization of light, $E=\hbar \nu$, means that each frequency or type of photon requires different materials and methods for detection.
Energy of photons

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Wavelength (nm)</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma rays</td>
<td><1 pm</td>
<td>>1.2 MeV</td>
</tr>
<tr>
<td>Soft gamma rays</td>
<td>0.001–0.01</td>
<td>120–1200 keV</td>
</tr>
<tr>
<td>X-rays</td>
<td>0.01–1</td>
<td>1.2–120 keV</td>
</tr>
<tr>
<td>Soft X-rays</td>
<td>1–10</td>
<td>120 eV–1.2 keV</td>
</tr>
<tr>
<td>EUV</td>
<td>10–100</td>
<td>12 eV–120 eV</td>
</tr>
<tr>
<td>UV</td>
<td>100–400</td>
<td>3–12 eV</td>
</tr>
<tr>
<td>Visible</td>
<td>400–700</td>
<td>1.7–3 eV</td>
</tr>
<tr>
<td>Near IR</td>
<td>1–3 μm</td>
<td>1.2–1.7 eV</td>
</tr>
<tr>
<td>Mid IR</td>
<td>3–10 μm</td>
<td>0.4–1.2 eV</td>
</tr>
<tr>
<td>Thermal IR</td>
<td>10–1000 μm</td>
<td>0.12–0.4 eV</td>
</tr>
<tr>
<td>Millimeter</td>
<td>1–3 mm</td>
<td>1.2×10^{-4}–0.12 eV</td>
</tr>
<tr>
<td>Radio</td>
<td>>1 cm</td>
<td>< 1.2×10^{-4} eV</td>
</tr>
</tbody>
</table>
Geometrical vs. Physical Optics

- **Geometrical**
 - Traces “rays” which do not interact with one another
 - Purely Geometric (e.g., Snell’s law, law of reflection)
 - Intersection of individual rays defines a focal plane and gives an image

- **Physical**
 - Wave nature of light
 - Wavefronts (rather than rays)
 - Wave propagation and interference determine illumination
 - Interference, diffraction, etc.
Fundamentals of light

- Light travels in a **straight line** in constant-refractive-index medium at speed c/n
- Refractive index n is 1.0 in vacuum, and is related to the permittivity (ε) and permeability (μ) of material: $c^{-1}=\sqrt{\varepsilon_0\mu_0}$; $v^{-1}=\sqrt{\varepsilon\mu}$; $n=\sqrt{\varepsilon\mu/\varepsilon_0\mu_0}$

<table>
<thead>
<tr>
<th>Material</th>
<th>Index (n)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>1.000274</td>
<td>274ppm different from vacuum</td>
</tr>
<tr>
<td>water</td>
<td>1.333</td>
<td>Similar for eyeball</td>
</tr>
<tr>
<td>quartz</td>
<td>1.458</td>
<td>Aka, fused silica</td>
</tr>
<tr>
<td>BK7 glass</td>
<td>1.52</td>
<td>Common optics for lenses</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.419</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>~3.5</td>
<td>CCD material, for instance</td>
</tr>
</tbody>
</table>
Reflection

- Reflection off a flat surface follows a simple rule:
 - angle in (incidence) equals angle out
 - angles measured from surface “normal” (perpendicular)
Reflection

• Also consistent with “principle of least time”

 – Fermat’s principle

 – If going from point A to point B, reflecting off a mirror, the path traveled is also the most expedient (shortest) route
Curved mirrors

- **What if the mirror isn’t flat?**
 - light still follows the same rules, with *local* surface normal

- **Parabolic mirrors have exact focus**
 - used in telescopes, backyard satellite dishes, etc.

S. Wright – July 25, 2017
Refraction

- **Light bends at interface between refractive indices (n)**
 - bends more the larger the difference in refractive index
 - can be effectively viewed as a “least time” behavior - get from A to B faster if you spend less time in the slow medium

Snell’s Law:

\[n_1 \sin \Theta_1 = n_2 \sin \Theta_2 \]
Internal reflection

• At critical angle, refraction no longer occurs
 – thereafter, you get total internal reflection
 \[n_2 \sin \Theta_2 = n_1 \sin \Theta_1 \; ; \; \Theta_{\text{critical}} = \sin^{-1}(n_1/n_2) \]
 – for glass, the critical internal angle is 42°
 – for water, it’s 49°
 – a ray within the higher index medium cannot escape at shallower angles
 – Total internal reflection often exploited in fibers

\[
\begin{array}{c|c}
 n_1 & 1.0 \\
 n_2 & 1.5 \\
\end{array}
\]
Optical design we consider every surface

- Let’s consider a thick piece of glass ($n = 1.5$), and the light paths associated with it
 - reflection fraction = $[(n_1 - n_2)/(n_1 + n_2)]^2$
 - using $n_1 = 1.5$, $n_2 = 1.0$ (air), $R = (0.5/2.5)^2 = 0.04 = 4\%$

incoming ray (100\%)

8\% reflected in two reflections (front & back)

4\% 4\% 4\% 0.16\% 92\% transmitted
Polarization at interfaces

• Incident light waves when hitting a medium wiggle charge (electrons) - direction of wiggle dependent on wave’s electric field

• Linear polarization important for both reflection and refraction at medium

P-polarized (from the German “parallel”) light has an electric field polarized parallel to the plane of incidence, while s-polarized (from the German “senkrecht”) light is perpendicular to this plane
Example polarization at interfaces

- Metal reflective coatings do not substantially affect polarization
 - Metals have free electrons

- Polarizing filters on camera or sunglasses can knock out reflections off glass or water – allowing only particular polarizations to be transmitted
Scattering of light

• Light also scatters off junk – air particles, dust, dirty mirrors, rough optical surfaces
 – Instrumentalist need to pay attention to surface quality of optics and particles within the instrument to reduce scattered light

• Scattering is a strong function of wavelength, generally scales as Rayleigh scattering as λ^{-4}
 – E.g., at sea level, dry air back scatters non-isotropic (e.g., sky is darkest blue 90 degrees away from Sun)
Optical coatings

- Anti-reflection (AR) coatings work by interference patterns
 - Transmission/Reflectivity a function of polarization (P/S)
Absorption

- Not all light is reflected or transmitted, some is absorbed
- Aluminum is a typical reflective coating (~92% R), Silver is better 96% R. Both good at broad λ, but gold better at infrared
 - Al chosen for most telescopes cause it does not tarnish

Reflectivity (R), Transmission (T), and Absorption(A) for P and S polarizations

<table>
<thead>
<tr>
<th></th>
<th>R(P)</th>
<th>T(P)</th>
<th>A(P)</th>
<th>R(s)</th>
<th>T(s)</th>
<th>A(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>88.7 %</td>
<td>0%</td>
<td>11.3 %</td>
<td>94.3 %</td>
<td>0%</td>
<td>5.8 %</td>
</tr>
<tr>
<td>AR @ 532 nm</td>
<td>0.5 %</td>
<td>99.5 %</td>
<td>0 %</td>
<td>0.3 %</td>
<td>99.7 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>
Physical Wave Optics

- **Interference**: waves interfere constructively (in phase) and destructively (out of phase)

- **Diffraction**: when a wavefront passes through a narrow aperture, it will spread out on the other side
Resolution of an imaging system

- Consider an off-axis point y for a single 1-d slit with width D and diffraction pattern at distance L.

- The path difference for two independent rays is

\[\frac{D}{2} \sin (\theta) \]

- Estimate the location of the first minimum (destructive interference, where \(\lambda/2 \))

\[\frac{D}{2} \sin (\theta) = \frac{\lambda}{2} \]

- For small \(\theta \) then,

\[\sin (\theta) = \frac{\lambda}{D} \]

This defines the width of the diffraction pattern and defines the diffraction-limit of 1D aperture.
Diffraction-limit of circular aperture

• The far-field diffraction pattern is given by the Airy function, where J_1 is the modified Bessel function of the 1st kind

$$\propto \left[\frac{J_1(x)}{x} \right]^2,$$

where

$$x \equiv \frac{2\pi D}{\lambda} \sin \theta$$

• The first minimum of the Airy function is at,

$$\sin \theta = 1.22 \frac{\lambda}{D}$$
Point Spread Function

- PSF is the distribution of light intensity in the image of a point source.
- Ideal case: diffraction-limited telescopes – Airy function.
- PSF is a function of the shape of the aperture and obstructions, geometrical optical aberrations, and diffraction effects due to dust and defects on the optics surfaces.

![FWHM Images](image-url)

S. Wright – July 25, 2017
II. Basic Optics: raytracing, lenses, & telescopes
Getting focused

• Just as with mirrors, curved lenses follow same rules as flat interfaces, using local surface normal

A lens, with front and back curved surfaces, bends light twice, each diverting incoming ray towards centerline.

Follows laws of refraction at each surface.

Parallel rays, coming, for instance from a specific direction (like a distant star) are focused by a convex (positive) lens to a focal point.

Placing detector at this point would record an image of the star at a very specific spot on the detector. Lenses map incoming angles into positions in the focal plane.
Generating an image

In a pinhole camera, the hole is so small that light hitting any particular point on the image plane must have come from a particular direction outside the camera.

In a camera with a lens, the same applies: that a point on the image plane corresponds to a direction outside the camera. Lenses have the important advantage of collecting more light than the pinhole admits.
Positive Lenses

- Thicker in middle
- Bend rays *toward* axis
- Form *real* focus
Negative Lenses

- Thinner in middle
- Bend rays *away from* the axis
- Form *virtual* focus
Image Formation

- Place arrow (object) on left, trace through image:
 - 1) along optical axis (no deflection – optical axis);
 - 2) parallel to axis (marginal ray), goes through far focus with optical axis ray;
 - 3) through lens center (chief ray);
 - 4) through near-side focus, emerges parallel to optical axis;
 - 5) arbitrary ray with helper
Image Formation

- Note the following:
 - image is inverted
 - image size proportional to the associated s-value:

- Gaussian lens formula (simple form):

\[
\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}
\]
Lensmaker’s formula

- Generic lens formula including radius of curvature (R) and index of refraction (n)

\[
\frac{1}{f} = (n - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)
\]
Lenses map directions into displacements

• Two objects at infinity an angle Θ apart produce distinct spots separated by σ
Telescope (Refractor w/ eyepiece)

- A telescope has an “objective” lens and an eyepiece
 - sharing a focal plane; giving the eye the parallel light it wants
- Everything goes as ratio of focal lengths: f_1/f_2
 - magnification is just $M = f_1/f_2$
 - displacement at focal plane, $\Delta y = \Theta f_2$
 - Notice the light going out is smaller (P_2), scales as $P_2 = D_1 f_2/f_1$ – easier to put a eye there or instrument!
Optical aberrations

- Aberrations occur in any optical system due to the wavefront quality of the optics and optical path differences of the rays.
Seidel aberration terms

- We determine the angular deviation of a ray by a third order approximation of sine and cosine.
- The angular aberration (e.g., radians or arcsec) is dependent on radius of curvature (R), height of ray (y), and angle of incidence (θ), and constants (a):

\[
AA_{\text{max}} = \frac{a_s}{f_n^3} + a_c \frac{\theta}{f_n^2} + a_a \frac{\theta^2}{f_n} + a_{fc} \frac{\theta^2}{f_n} + a_d \theta^3
\]

![Diagram of Seidel aberration terms](image)
Distortions at the focal plane

- No distortion
- Pincushion distortion
- Barrel distortion

Distortion of NIRC2 camera on Keck
Newtonian telescope

• The Newtonian has a parabolic mirror and flat secondary mirror that reflects the light to focus at the side of the telescope
 – Used in mostly amateur telescopes today
 – Suffers from coma and astigmatism (one curved surface)
Cassegrain Telescope

- The Cassegrain has a parabolic primary mirror and hyperbolic secondary mirror that focuses the light through a hole in the primary
 - Fixes astigmatism aberrations (and some coma)
 - Folding the optics makes this a compact design
The Hooker telescope on Mt. Wilson – 2.5m Cassegrain telescope

Telescope used by Edwin Hubble to discover the expanding universe
Ritchey–Chrétien Telescope

- An RC telescope has a hyperbolic primary mirror and hyperbolic secondary mirror.
- Many modern telescopes since it fixes coma aberrations.

![Ritchey-Chrétien Telescope](image)

Thirty Meter Telescope w/ M3 tertiary mirror
Focal ratio (f/#, f-ratio)

• The focal ratio characterizes the rate of convergence of a bundle of rays as they form an image

• f/# is the focal Length/ Entrance Pupil Diameter (Input Beam Size)
 - f/# = F_o/D_o (if fully illuminated)

• Intensity in the image plane \(\propto (1/\text{f-ratio})^2 \)
Focal ratio – Optics scale

- High focal ratios (e.g., f/20) imply the incoming rays converge “slow”
- Low focal ratios (e.g., f/2) indicate that the incoming rays converge “fast” at a wide angle
 - Fast systems have increased aberrations and are difficult to focus, but they are incredibly useful for wide-field imaging or broadband spectroscopy
Aperture Stop

Aperture stop: the element that limits the angular size of the cone of light accepted and so controls the image brightness, e.g., the edge of lenses or an iris diaphragm.
Field Stop

Field stop: limits the field-of-view (FOV) or the size of the image. Often at focal plane and may be the edge of an imaging sensor.
“Pupils”

• *Pupils* are **images** of physical stops
• *Entrance pupil*: the image of the aperture stop looking forward from object space formed by the intervening lenses
• *Exit pupil*: the image of the aperture stop looking back from image space formed by the intervening lenses.
 – Image resolution and aberrations are often associated with the exit pupil
 – Entrance and exit pupils are **conjugate**, just as an object and image
 – Entrance and exit pupils coincide with the aperture stop at the lens for a single, thin lens—the entrance pupil of an astronomical telescope is typically at the primary mirror.
Consider two “field points” on the focal plane
 – e.g., two stars some angle apart
The rays all overlap at the aperture
 – called the entrance pupil
The rays are separate at the focus (completely distinct)
Then overlap again at exit pupil, behind eyepiece
Optical design constraints

• Often designing an instrument for a specific telescope with a given f/# input
 – \(f/\text{number} = \left(\frac{f_{\text{telescope}}}{D_{\text{telescope}}} \right) \)

• Designing around a specific detector that has particular noise characteristics
 – This means set pixel and array size

• Job is to design optical system with f/# camera to achieve desired plate scale and field of view
Designing a camera to a specific telescope and detector

- If the science cases want a particular field of view and plate scale, then you need to match the re-imaging optics (camera) to the telescope.
Designing an optical seeing-limited camera for Keck (10m)

• Assume that seeing is 0.5” (on Mauna Kea) and we want two pixel sampling, then desired plate scale is 0.25”/pixel

• CCD cameras typically have small pixel sizes, let’s assume $d_{\text{pixel}} = 20 \, \mu m$

$$\frac{f/\#}{\text{camera}} = 206265 \frac{d_{\text{pixel}}}{D_{\text{telescope}} \theta_{\text{pixel}}}$$

$$\frac{f/\#}{\text{camera}} = 206265 \frac{20 \, \mu m}{10 \, m \times 0.25''} = 1.7$$

This is very fast optics!

Optical cameras get more and more challenging to make with bigger telescopes and as detectors use smaller and smaller pixel sizes!

S. Wright – July 25, 2017
You are designing two cameras that will each be installed on a 1m and 10m telescope. Each camera uses the same detector and achieve the same plate scale on both telescopes. Which statement is true about the f/# of the cameras?

A. The f/# of the camera for the 1 m telescope is smaller than the f/# for the 10 m telescope.
B. The f/# of the camera for the 1 m telescope is larger than the f/# for the 10 m telescope.
C. The f/#'s of the two cameras are the same.
D. It is not possible to design cameras with the same plate scale and pixel size for a 1 m and a 10 m telescope.
Plate scales

• The size of the detector pixel (d_{pixel}), the diameter of the telescope (D_{tele}), and the (f/#) camera defines the plate scale at the detector

$$\theta_{\text{pixel}} = \frac{206265}{D_{\text{telescope}}(f/\#)_{\text{camera}}} \frac{d_{\text{pixel}}}{D_{\text{tele}}}$$

where θ_{pixel} is in units of arcseconds per pixel

• Field of view would then be defined by the detector array size times plate scale
 – E.g., (2048x2048) * θ_{pixel}
You are designing two cameras that will each be installed on a 1m and 10m telescope. Each camera uses the same detector and achieve the same plate scale on both telescopes. Which statement is true about the f/# of the cameras?

A. The f/# of the camera for the 1 m telescope is smaller than the f/# for the 10 m telescope.

B. The f/# of the camera for the 1 m telescope is larger than the f/# for the 10 m telescope.

C. The f/#'s of the two cameras are the same.

D. It is not possible to design cameras with the same plate scale and pixel size for a 1 m and a 10 m telescope.
Good References

From this lecture following input slides from Tom Murphy, Anna Moore, Dae-Sik Moon