A possible origin of compact systems of hot Super Earths

Christophe Cossou
Sean Raymond & Arnaud Pierens

Bordeaux, France

June 6th 2013

Session 7, Talk : 7.06
Introduction
Principle
Actual Simulation
Parameter space
Conclusion
Questions

Christophe COSSOU, Talk 7.06

source: exoplanet.eu (May 2nd, 2013)
Compact System of hot super earths

Christophe COSSOU, Talk 7.06
- N-body simulations: Mercury code (Chambers, 1999)
- 1D disk model (solving energy equation)
 - Density profile \(\propto R^{-d} \)
 - Opacity Table
 - Temperature profile: balance between viscous heating and radiative cooling
- Eccentricity and inclination damping by a gas disk
- Migration from torque formulae (Paardekooper et al., 2011)
Convergence Zone

Outward Migration

Inward Migration

Semi Major Axis (AU)

0 1 2 3 4 5 6 7 8

Christophe COSSOU, Talk 7.06
Christophe COSSOU, Talk 7.06
BUT...
Lindblad: typically Inward Migration

Corotation torque: Inward/Outward Migration

Total Torque = Lindblad Torque + Corotation Torque
(Bitsch & Kley, 2010)
poster by S. Fendyke (4.22)

Corotation torque modified by eccentricity

- $e=0$
- $2\times_s$
- $e>0$
Eccentricity? In disk?
(Cossou et al., 2013) A&A, 553, L2

Convergence Zone

\(e = x_s \)

1 planet

2 planets

Christophe COSSOU, Talk 7.06
Christophe COSSOU, Talk 7.06
Migration map

Planet mass (m_{earth})

Semi-major axis (AU)

Christophe COSSOU, Talk 7.06
Migration map

Semi-major axis (AU)

Planet mass (m_{earth})

Christophe COSSOU, Talk 7.06
Migration map

Semi-major axis (AU)

Planet mass (m_{earth})

Outward

Inward

Christophe COSSOU, Talk 7.06
Migration map

Semi-major axis (AU)

Planet mass (m_{earth})

Outward

Inward

Christophe COSSOU, Talk 7.06
Christophe COSSOU, Talk 7.06
Presence of Resonances
High sensitivity to migration map

Christophe COSSOU, Talk 7.06
Presence of Resonances

High sensitivity to migration map
Disk parameters : Density
\[\Sigma(R) = 1500.0 \times R^{-\frac{1}{2}} \text{g/cm}^2 \]

Evolution of the total torque \(\Gamma_{\text{tot}}/\Gamma_0 \)

Christophe COSSOU, Talk 7.06
\[\Sigma(R) = 0800.0 \times R^{-1/2} \text{ g/cm}^2 \]

Evolution of the total torque \(\Gamma_{\text{tot}}/\Gamma_0 \)
\[\Sigma(R) = 0.300 \times R^{-1/2} \text{ g/cm}^2 \]

Evolution of the total torque \(\Gamma_{\text{tot}}/\Gamma_0 \)

Christophe COSSOU, Talk 7.06
Compact Systems of Hot Super Earths

Christophe COSSOU, Talk 7.06
Compact Systems of Hot Super Earths

Jupiter candidates also
Compact Systems of Hot Super Earths

Jupiter candidates also

Disk parameters
- Turbulence
- Photo-evaporation
- Gas accretion
- Volatile content

1. Compact Systems of Hot Super Earths
2. Jupiter candidates also
3. Disk parameters
4. Ongoing...
Take home message

Multiple planets do NOT converge at Convergence Zone!

Christophe COSSOU christophe.cossou@u-bordeaux1.fr (post-doc ?)
b/h = 0.6
adiabatic index = 1.40
mean molecular weight = 2.35
viscosity type = alpha (Alpha-prescription, with constant alpha)
alpha = 5 \cdot 10^{-3}
opACITY type = hure (Opacity table from (Hure, 2000))

disk : R \in [0.1; 100] \text{AU}
initial surface density = 300 \cdot R^{-1/2} \text{g/cm}^2
inner smoothing width = 0.005 \text{AU}

include turbulence = False
include irradiation = True
Stellar surface temperature = 5700 \text{K}
Stellar radius = 4.65 \cdot 10^{-3} \text{AU}
Disk Albedo = 0.5
Opacity

- (Bell & Lin, 1994)
- (Zhu & Hartmann, 2008)
- (Huré, 2000) (opacity table)
opacity laws (Bell & Lin, 1994)

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$
opacity laws (Zhu & Hartmann, 2008)

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$
opacity table (Huré, 2000)

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$
Temperature profile

Christophe COSSOU, Talk 7.06
eccentricity damping
inclination damping